Efficient digital systems for computer arithmetics

Loofmann

2016-05-27 @ AFRA

Introduction

- Who am I?
 - Stefan Laufmann (Loofmann)
 - loofmann@afra-berlin.de
- What do I do?
 - study of Computer Engineering (Msc.) @ TU Berlin
- Why do I know this stuff?
 - interest in design of digital systems
 - took a course in the last semester: "Computer Arithmetics: Circuit Perspective" by Dr. Ahmed Elhossini

What is this talk about?

- digital systems (circuits) for arithmetic functions
- arithmetic functions as in:
 - addition, multiplication, division
- numbers as in:
 - unsigned integers
- digital circuits as in:

Outline

- 1. Define our measure
- 2. Addition the straightforward way
- 3. Addition the clever way
- 4. Multiplication done precisely
- 5. Multiplication done not so precisely

Ex: Design Process of Digital Systems

How are digital systems designed? (from my experience)

- 1. design circuit on whiteboard
- 2. describe circuit in HDL (Verilog, VHDL)
- 3. throw powerfull and awful software tools at it
- 4. get a circuit out

Define our Measure

What makes a "good" circuit?

- area used on final chip
- speed of the circuit: critical path delay
- How do you measure this?
- e. g. for CMOS technology
 - smallest area is that of 1 inverter (α)
 - shortest delay is that of 1 inverter (Δ)

critical path

longest logical path through a circuit

Addition – the straightforward way

- adding two bits and carry bit is easy (seen above)
 How to add two numbers (e. g. 4 bit)?
 - add each bit position one after the other

source: https://en.wikipedia.org/wiki/Adder_ %28electronics%29#/media/File:4bit_ripple_carry_adder.svg

Addition – the straightforward way (2)

How to add multiple numbers?

- add each operand one after the other
- What are the downsides of this?
- consumes large area on the chip
- high delay due to long critical path

source: TU Berlin, *Computer Arithmetics: Circuit Perspective*; lecture 3, slide 21

Ex: Dot Diagrams aka dotagrams

- technique to visualize the structure or arithmetic operations
- also used for computer arithmetic
- dot represents binary digit

example for multiplication of two 4-bit numbers

Addition – the clever way

- ways to speed up addition of two operands:
 - carry-lookahead adder
 - conditional sum adder
 - carry-select adder

How to speed up the addition of multiple operands?

- use so called "counters":
 - 3:2
 - 4:2
 - m:n

Addition – the clever way (2)

•	a full-adder is called 3:2-counter	•
•	addition of two bits can be seen as	•
•	with only little overhead there can also be a 4:2-counter	•
•	these counters can be combined to easily add multiple operands	•
		•

Addition – the clever way (3)

 ×1 ×2 ×3 	
×3	
• • • • ×4	
• • • • ×5	
• • • • s_012 =p) 1
• • • • c_012 = r	p2
• • • • s_345 = r	53
• • • • c_345 = r	p4
• • • • • $s_p1p2p3 =$	= q1
• • • • c_p1p2p3 =	= q2
• • • • • s_p4q1q2	2
• • • • c_p4q1q2	2
• • • • • • result	

- addition of six 4-bit numbers in a so called "carry save adder"
- 4 rows of 3:2-counters
- 1 final full adder
- total area: 15FA + 1HA
 + 6bit adder
- delay: 4 stages of FA

Note:

Different counter types can be mixed but CMOS technology processes benefit from regular structures.

May, 27th 2016

Multiplication – done precisely

- in fact multiplication is just addition
- different multiples of one factor get added according to the bits in the other factor

e. g.:

- $1101_2 * 1001_2 = 1*1101_2 + 8*1101_2 = 1110101_2$ (13 * 9 = 117)
- the multiples called partial products get shifted according to the bit position they originated from

Multiplication – done precisely (2)

- 3:2-counters or 4:2-counters are used to add partial products
- this is again the straightforward way
 Is there a better way?

Yes!

- For example: multipliers using booth-encoding
- use the fact that partial products occur more than ones in the multiplication
- this reduces the number of partial products to add

Multiplication – done precisely (3)

- Radix-4 Booth Multiplier:
 - 1) take 3 digits from the multiplicand (start from the right)
 - 2) generate partial product according to the digits
 - 3) take next 3 digits (2 steps to the left from last ones)
 - 4) repeat 2 3 until no digits left
 - 5) add all partial products

digits f	digits from multiplicand		factor for partial product	digits f	rom multij	factor for partial product	
0	0	0	0	1	0	0	-2
0	0	1	1	1	0	1	-1
0	1	0	1	1	1	0	-1
0	1	1	2	1	1	1	0

Note: Here we deal with signed integers (two's complement). This influences the addition circiut!

Multiplication – done precisely (4)

Give me numbers!

Radix	Group Size	Reduction	Radix Set	Encoder	Selector	HARD	FPA's	Critical
r	(bits)	Ration in SD	Size	Control	AND-OR	Multiples		Path
		(n/k)		Signals	(input)			(Gates)
2	2	1	3	2	1 and	0	0	3
4	3	0.5	5	3	4	0	0	6
8	4	0.333	9	5	8	1	1	$7+t_f$
16	5	0.25	17	9	16	4	3	$8 + t_{f}$
32	6	0.2	33	17	32	11	7	$9 + t_{f}$
64	7	0.166	65	33	64	26	15	$10 + t_{f}$
256	9	0.125	257	129	256	120	63	$11 + t_{f}$

source: TU Berlin, Computer Arithmetics: Circuit Perspective; lecture 6, slide 37

Multiplication – done not so precisely

• precise results not always required

Maybe we can figure out a way to do do multiplication different and faster but with a small error?

Computer Multiplication and Division Using Binary Logarithms*

JOHN N. MITCHELL, Jr., † Associate, ire

John N. Mitchell. "Computer Multiplication and Division Using Binary Logarithms". In: Electronic Computers, IRE Transactions on EC-11.4 (Aug. 1962), pp. 512–517.

Multiplication – done not so precisely (2)

• it is proven that:

 $a^*b = \log_{-1}(\log(a^*b)) = \log_{-1}(\log(a) + \log(b))$

- if we have an efficient (anti-)logarithm for binary numbers we can save the multiplication
- approximate binary logarithm:
 - find position of most significant 1, treat it as integer part of result
 - rest of number becomes fraction part of result

- e. g.: $\log(1101) \approx 11.101 \quad \log(13) \approx 3.625$

• anti-logarithm is the reversion of this process

Multiplication – done not so precisely (3)

- the multiplication is then performed as:
 - 1. compute approx. log
 - 2. add
 - 3. compute approx. anti-log
- easy solution for functions with multiplication and division
- picture shows circuit for:
 - $f = \sqrt{\frac{A \cdot B \cdot C}{D}}$

The last slide, yeah!

Questions?